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Fourier Transforms
(ERA Appendix A)

Vibe check

Vibration inquiry

Fourier analysis

~N

Fourier transforms are very important for radio
astronomy! Key for signal processing,
interferometry, and instruments. It is therefore
important you familiarize and/or refresh yourself with

the key properties and applications. y

\_
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The Fourier transform of f(x) is defined by, Example visual:

F(s) = / fx) e gx,| (A1

Where f(x) is known as the forward or inverse transform,

fx) = / F (s) €™ ds, (A.2)

€~?
o Frequency ‘s

*Symbols g or < used to denote the “Fourier transform of...”

F(s) < f®)

l National
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The Fourier transform of f(x) is defined by, / \
* The complex exponential is at

o0 | — the heart of the transform

F (S) = / f(X) e 2misx dx, (A.1) * Much easierto r.nanlpu.late

— oo (compared to trig functions)

* Provides a compact notation for
dealing with sinusoids of
arbitrary phase

* Most physical systems we

Where f(x) is known as the forward or inverse transform,

00 0 i encounter obey linear
f(x) = F(s) ™" ds, (A.2) differential equations
—00 \represented by sinusoidalwavy
*Symbols g or & used to denote the “Fourier transform of...” Euler’s formula:

F(s) < f®)

e = Cos @ + i sin ¢,
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The Fourier transform of f(x) is defined by, / \
* The complex exponential is at

o0 | — the heart of the transform

F (S) = / f(X) e 2misx dx, (A.1) * Much easierto r.nanlpu.late

— oo (compared to trig functions)

* Provides a compact notation for
dealing with sinusoids of
arbitrary phase

* Most physical systems we

e N i encounter obey linear
f(x) = F(s) ™" ds, (A.2) differential equations

00 \represented by sinusoidal Wavy

Where f(x) is known as the forward or inverse transform,

*Symbols g or & used to denote the “Fourier transform of...”

F(s)e fx) [Let’s do an example! !]
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In astronomical data, we deal
with signals discretely sampled,
usually at constant intervals, and
of finite duration or periodic.

4

A Discrete Fourier Transform
(DFT) used when only a finite
number of sinusoids is needed.
Usually, the DFT is computed by a
Fast Fourier Transform (FFT)
algorithm that can improve
computational speeds by several

wers of magnitude! /
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In astronomical data, we deal Can think of taking ‘samples’ from a continuous spectrum

with signals discretely sampled,

usually at constant intervals, and
of finite duration or periodic.

4

continuous
(Fourier transform)

real space Fourier space
A Discrete Fourier Transform O ) T
(DFT) used when only a finite ° '
number of sinusoids is needed. gE
Usually, the DFT is computed bya | $* HTTHHHTTH TH[TH[TH[
Fast Fourier Transform (FFT) -« P
algorithm that can improve T F
computational speeds by several

wers of magnitude! /
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In astronomical data, we deal
with signals discretely sampled,
usually at constant intervals, and
of finite duration or periodic.

4

A Discrete Fourier Transform
(DFT) used when only a finite
number of sinusoids is needed.
Usually, the DFT is computed by a
Fast Fourier Transform (FFT)
algorithm that can improve
computational speeds by several

wers of magnitude! /

Can think of taking ‘samples’ from a continuous spectrum

SN A

continuous
(Fourier transform)

Hmmw i

* This occursin both the real and Fourier domains!
* For‘real’valued input this is an even function, and the
imaginary part is odd where F(s) = F(-s), i.e., DFT is Hermitian
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Important properties of Fourier Transforms:

Addition Theorem: The Fourier transform of the sum of two functions f(x) and g(x) is the sum of their
Fourier transforms F(s) and G(s).

fO+gx)e F)+G(s). (A.8)
Likewise, from linearity, if a is a constant, then
af (x) © aF (s). (A.9)
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Important properties of Fourier Transforms:

Addition Theorem: The Fourier transform of the sum of two functions f(x) and g(x) is the sum of their
Fourier transforms F(s) and G(s).

fO+gx)e F)+G(s). (A.8)

Likewise, from linearity, if a is a constant, then

af (x) © aF (s). (A.9)

Shift Theorem: A function f(x) shifted along the x-axis by a to become f(x—a) has the Fourier
transform e 2"%F(s). The magnitude of the transform is the same, only the phases change:

f(x—a) e e BSE (). (A.10)
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Important properties of Fourier Transforms:

Similarity Theorem: For a function f(x) with a Fourier transform F(s), if the x-axis is scaled by a
constant a so that we have f{ax), the Fourier transform becomes |a|~1F(s/a).

F (sla
f(ax) & ( ). (A.11)
&
. ‘ bl National
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Important properties of Fourier Transforms:

Similarity Theorem: For a function f(x) with a Fourier transform F(s), if the x-axis is scaled by a
constant a so that we have f{ax), the Fourier transform becomes |a|~1F(s/a).

F (s/a)
la]

Modulation Theorem: Very important in radio astronomy as it describes how signals can be “mixed” to
different intermediate frequencies (IFs):

f(ax) & (A.11)

1 1
f(x)cos 2zvx) & EF (s—v)+ EF s+v). (A.12)
bl National
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Important properties of Fourier Transforms:

Similarity Theorem: For a function f(x) with a Fourier transform F(s), if the x-axis is scaled by a
constant a so that we have f{ax), the Fourier transform becomes |a|~1F(s/a).

F (s/a)
la]

Modulation Theorem: Very important in radio astronomy as it describes how signals can be “mixed” to
different intermediate frequencies (IFs):

f(ax) & (A.11)

1 1
f(x)cos 2zvx) & EF (s—v)+ EF s+v). (A.12)

Derivative Theorem: I

— & i2asF (s). (A.13)

dx
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Important properties of Fourier Transforms:

Similarity Theorem: For a function f(x) with a Fourier transform F(s), if the x-axis is scaled by a
constant a so that we have f{ax), the Fourier transform becomes |a|~1F(s/a).

f(ax) &

F (s/a)
la]

(A.11)

Modulation Theorem: Very important in radio astronomy as it describes how signals can be “mixed” to

different intermediate frequencies (IFs):

1 1
f(x)cos 2zvx) & EF (s—v)+ EF s+v). (A.12)

Derivative Theorem:

— & 27nsF (s).
Ix i27nsF (s)

(A.13) [Let’s look at online tool! !]

https://www.falstad.com/fft/index.html
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https://www.falstad.com/fft/index.html
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Important applications of Fourier Transforms:

Convolution multiplies one function f by the time reversed Example:

kernel function g, shifts g by some amount u, and integrates
Function

u from —oo to +oo Result

: N
h(x)=f*g= / JWgx—u) du.| (a14)
—00 X —=

'Kernel'

Convolution theorem:

fxge F-G.| (a15) Fig. A.2

i ) il National
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Important applications of Fourier Transforms:

Convolution multiplies one function f by the time reversed Example:

kernel function g, shifts g by some amount u, and integrates
Function

u from —oo to +oo Result

: N
h(x)=f*g= / fyg(x—u) du.| (aa
—00 X —=

'Kernel'

Convolution theorem:

fxge F-G.| (a15) Fig. A.2

Can convolve things incredibly
quickly with the Fourier transform!

. . lal National
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Important applications of Fourier Transforms:

Convolution multiplies one function f by the time reversed
kernel function g, shifts g by some amount u, and integrates

u from —co to +oo

h(x)=f*g5/ fwgkx—u) du.| (a14)

Convolution theorem:

g F-G.

(A.15)

Example:
Function
Result
X —>
'Kernel'
Fig. A.2

Can convolve things incredibly

[Let’s look at online tool! :]

quickly with the Fourier transform! https://phireskv.github.io/convolution-demo/
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https://phiresky.github.io/convolution-demo/

Important applications of Fourier Transforms:

Convolution multiplies one function f by the time reversed
kernel function g, shifts g by some amount u, and integrates
u from —oo to +oo

Cross-correlation is a very similar operation to
convolution, except that the kernel is not time-reversed:

h (x) =f*85/oof(u)8(x—u) du. | (a.14) f*gE/ fW)g(u—x) du.| (Al6)

Convolution theorem: Cross-correlation theorem:

fxge F-G.| (a15)

fxgeF -G (A.17)

NOTE: unlike for convolution,

@) * g(x) # g (x) *f(x)
. . l National
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Important applications of Fourier Transforms:

ignals?
AKA How similar are your two signa

1.0 C 3 . . .. .
05k E Cross-correlation is a very similar operation to
X . ] convolution, except that the kernel is not time-reversed:
£ VY E
7 05t 3
-1.0E 3 0
0 20 x40 60 80 fxg= f(w)g(u—x) du.| (A16)
S 1.0 : —c0
© 0.8F 3
S 0.6F 3 lation th
8 04 i E Cross-correlation theorem:
@ 0.2F E —
=~ 0.0t . . . . . =
O *xg & F-G. A.17
15 10 -5 0 5 10 15 S *8 A17)
X Offset Between Red & Blue
NOTE: unlike for convolution,
F(x) * g (x) # g @) xf(x)
i ) al National
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Important applications of Fourier Transforms:

ignals?
AKA How similar are your two signa

1.0 C 3 . . .. .
05k E Cross-correlation is a very similar operation to
X A ] convolution, except that the kernel is not time-reversed:
£ YV E
7 05t 3
-1.0E 3 0
0 20 x40 60 80 fxg= f(w)g(u—x) du.| (A16)
S 1.0 : —c0
© 0.8F E
S 06F 3 lation th
8 04 3 E Cross-correlation theorem:
8 02p 3 =
S 0.0t . . . . . E fxgoe F-G. (A.17)
15 10 5 0 5 10 15

X Offset Between Red & Blue

Autocorrelation is a special case (Wiener-Khinchin theorem): NOTE: unlike for convolution
* Vi

g 2
fxfeF -F=|F|" (s fQ) *g() #g®) *f(x)
. . bl National
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Important applications of Fourier Transforms:

Cross-correlation is a very similar operation to
convolution, except that the kernel is not time-reversed:

(funj:ltlon) DFT (tranjlform) fxg= / fwgw—x) du.| (A16)
Xokx = bk

(autocorrelation) DFT (power spectrum)

(Show and tell time! Pass around )
correlator card from the obsolete
Arizona Radio Observatory (ARO)
Autocorrelation is a special case (Wiener-Khinchin theorem): Millimeter Autocorrelator (MAC) !,

fxfeF-F= | F|2 (r18) | \ backend spectrometer

. . = bl National
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Important applications of Fourier Transforms:

Aliasing ex:

**Sampling Theorem or Nyquist-
Shannon Theorem: any bandwidth-
limited (or band-limited) continuous
function confined within the frequency
range Av may be

reconstructed exactly from uniformly
spaced samples separated in time by
< (24v)-1. The critical sampling

rate (At)-1=2Av is known as

the Nyquist rate, and the spacing
between samples must

satisfy At<1/(2Av) seconds

ASTR 5340 - Introduction to Radio Astronomy ﬁ
Contact: sscibell@nrao.edu \S&?RNV/?T%

ol National
o
: ﬂ Radio
@ Astronomy
Nia\®) Observatory




Important applications of Fourier Transforms:

Aliasing ex:

**Sampling Theorem or Nyquist-
Shannon Theorem: any bandwidth-
limited (or band-limited) continuous
function confined within the frequency
range Av may be

reconstructed exactly from uniformly
spaced samples separated in time by
< (24v)-1. The critical sampling

rate (At)-1=2Av is known as

the Nyquist rate, and the spacing
between samples must

satisfy At<1/(2Av) seconds

The frequency of the sampled
bandwidth is the Nyquist frequency: |vne = 1/(2 Ap).| (A6)

ASTR 5340 - Introduction to Radio Astronomy ﬁ
Contact: sscibell@nrao.edu \3&?&%’%

ol National
o
: ﬂ Radio
@ Astronomy
Nia\®) Observatory




More Dust Emission (It’s so important!)
(ERA Chap. 2.8 + THz Astronomy Chap. 3)

.J;_.

g

Evolved Stars & “'@5..,"";,’ e FUN FACT!

~Supernovae M - \ Dust grains account for only ~1% of the ISM (interstellar
medium) by mass but are responsible for absorbing
~30% of the Universe’s starlight and reradiating it at

CHz frequencies! )
i . gl National
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A (cm)
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A (cm)
1000 100 10 1 0.1 0.01

i | IIIIIII LI FITTII T T Illllll L I Illllll 1 l”llll I b Illlllli_‘ / - . \
Continuum Spectrum of M82 R * Thermaldustemission
1000 E dominates over other forms of
- . continuum radiation beyond
i | around 300 GHz (or ~1Tmm)!
100 | 4 | - .
= = * This is due to wide-spread
_ . i existence of ~12-30 Kdust and
5 - : . y the wavelength dependence of
o 10 = \ the emission mechanisms /
Z Synchrotron\’\ Thermal :
| Dust |
15 Free-free E
- P :
8 N, e P
i \‘\.,-' §
01 P 1 IIIIIII | | Illll.l] 1 lllllll 1 | IIIIIII ."\ﬂ 1 !IIIlI] | Lt L1111
0.01 01 1 10 100 1000 10* Planck Data of Milky Way Dust ~300GHz
Credit: ESA/NASA/JPL-Caltech
v (GHz)
. . bl National
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Key Concept: Extinction

Extinction = Absorption + Scattering

Your equation of transfer now
includes an ‘extinction coefficient’
or dust opacity that includes an
extinction emissivity factor, Q,,,, that
is dependent on wavelength where,

kK, =nQ(M)o

L [em]

Particle Cross section [cm?]
number

density [cm™3}
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The extinction, A,, of starlight by dust is defined in terms of magnitudes of extinction,

A, = —-2.5log S0
= 1.08671,
=1.086N,Q,,,(ma?)

where, s
R

(3.1in THz Astronomy)

S° =ob d flux densitv (J emember this is a combination of scattering\
v = observed flux density (J) and absorption (and it also depends on

S| = intrinsic flux density (Jy) wavelength or frequency)!
T, = dust optical depth

a = dust grain radius (cm)

N, = dust column density (cm-2)

Q! = emissivity of dust grain, that is, how much like a black body it appears to be;
1 < true black body, 0 < fully invisible

\ Qext = Qabs + Qscat )

i ) il National
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The extinction, A,, of starlight by dust is defined in terms of magnitudes of extinction,

(0]

A, = —-2.5log "

AY Si
v (3.1in THz Astronomy)
= 1.0867,
=1.086N,Q,,,(ma?)
where, 7 N
. Remember this is a combination of scattering

S“? = observed flux density (Jy) and absorption (and it also depends on
S, = intrinsic flux density (Jy) wavelength or frequency)!
T, = dust optical depth
a = dust grain radius (cm) Q..i= Qups + Quet

N, = dust column density (cm=) > N

Q! = emissivity of dust grain, that is, how much like a black body it appears to be;
1 < true black body, 0 < fully invisible

IXH ~ 1.79 X 10 _atoms

2
(Predehl and Schmitt, 1995) v cm® mag

(3.3 in THz Astronomy)

i ) = il National
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Another really cool thing... Extinction curves
provide clues to the composition and size
distribution of dust grains!

A(N)/A(V)

] Ll L) L) '

—o— SMC bar

~-@-- LMC2 supershell
- -o- - LMC average

== MW (R, = 3.1)

.’}il’/—
e B
‘,’r!' :
| l : : —
2 4 6 8
-1
1/A (um™) Fig. 3.3 (THz Astronomy)
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Another really cool thing... Extinction curves

provide clues to the composition and size - $
distribution of dust grains! I —=o— SMC bar : $”*/ |
6 |-® LMC2 supershell Y sl

i - -o- - LMC average A -

e || o—— MW (R, = 3.1) & "

/Grains typically made up of graphite and
silicates (the major component), plus

polycyclic aromatic hydrocarbons (PAHSs)

* Individual grain radii extend from less
than or equal to 0.005 (PAHs) to ~0.12
microns (silicate and carbonaceous)

 BUT! Grains grow and accumulate on
ice mantles and canreach ~0.Tmm to
mm sizes! This changes the effective
opacity and can affect measurements

\of temperature, density, mass, etc.,!/

A(MN)/A(V)
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Dust Emission in practice

r

Recentresults from the Green Bank
Observatory’s Continuum Instrument,
MUSTANG-2, that observes the sky at
wavelengths of 3mm (90 GHz)

J

Image shows inner ~ 300 light years -

of Galactic Center.
Look how dynamic and dusty it is!

(NSF/AUI/GBO)

) —— Scale: 10 light years

[ Keep in mind for Final Project! ]

Extended HII Regions
(past star formation events)

Star Clusters

Sgr A* (super massive black hole)

Ginsburg et al., 2020

Sgr B2 (current star forming site)
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Dust Emission in practice [Keep in mind for Final Project!]

40 | | | | 14
28°12' 35 12
28°12'
30'%| 10 %
(] Q
s &
, 253 >
) 09 E‘ § 09'- 8 E
S 202 S 2
= IG ) 0n
. 15 ¢ £
06' . 06 =
£ 4 E
10 = [
r2
r5
03' 03'-
°
A T T T T : 0 hqamqos ns mags rs 0
4h1gm12s 00° 17mags 36° 4718712 00 17748 36
RA (J2000) RA (J2000)
Scibelli et al., 2023
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Dust Emission in practice [Keep in mind for Final Project!]

B
Dust opacity, ky, can be directly probed with these two maps! Starting with relation 2> Ky = K (L)
Y0

40 I I I I 14

28°12' 35 b
28°12'
30"'%' " %
[} [J]
8 8
, 253 >
3 " E § 09'- 8 E
S 208 S 2
3 ? 3 .
8 g ° 2
' 15 £ £
06" = 06" =
£ 4 £
10 = [
r2
03’ ° 03'
\. q ' T T T T O
4"18m12° 00° 17m4gs 36° 0 4"18Mm12° 00° 17M48° 36°
RA (J2000) RA (J2000)
Scibelli et al., 2023
. . ol National
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Dust Emission in practice [Keep in mind for Final Project!]

B
Dust opacity, ky, can be directly probed with these two maps! Starting with relation 2> Ky = K (L)
Y0

40 I I I I 14

Where, in the optically thin limit,

28°12'
28°12'+

SV = By [Td] QTV,

30%‘ 10"-%'
2 H For, 5
255 > —_
g ™ £ S o 8 E Ty =Ky
S = 8 .
= 208 = E
g £ & 6 5
06'- 15§ - i
£ 4 g
10 N
r2
03’ ° 03'
\. 9 0 : T T T T O
4h18‘m125 065 17'“‘485 3és 4"18M12° 00s 17M48s 365
RA (J2000) RA (J2000)
Scibelli et al., 2023
. . al National
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Dust Emission in practice [Keep in mind for Final Project!]

B
Dust opacity, ky, can be directly probed with these two maps! Starting with relation 2> Ky = K (L)
Y0

40 I I I I 14

Where, in the optically thin limit,
28°12' 35 — 12
30°g - Sy = By [T4]Q1y.
25_2 é For, _ y
g 09'- ? g 0o | o E Ty = Ky
= O
& 20 2 S g You can exploit this to find B using the
g g & 68 ratio of the two maps!
, 15€ £
06’ = 06' , E P
105 ‘g‘ Rl 5 = BVl.me [Td] (V1.2mm)
, " By omm [Tal \v2.0mm
031 N 03' ' '
\‘ 9 0 : T T T T 0
4h18m125 00° 17m4gs 36° sz 00* " (leg;gfs 3 log(R1.2 X By, opum [ Tal1/ By spm [Tal)
RA (J2000) =
log(v1.2mm/Vv2.0mm)
Scibelli et al., 2023
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Dust Emission in practice

[ Keep in mind for Final Project! ]

T T T T T T T
Herschel Average
(Singh & Martin 2022)

0&H94=0; bare0
O&H94=1; bare5 (OH2)
—-—— 0&H94=10; thin0
—-—— O&H94=11; thin5 (OH5a)
3 NIKA2 8 Map _

/”This suggests that the\

opacity laws we use in our
radiative transfer analysis,
which are also used
elsewhere throughout the
literature, do not accurately

\describe the observed ,3”/
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Dust Emission in practice [Keep in mind for Final Project!]

28°15 —— ———————— 4.5
: . m 4.0 50 __ I I I I ii | | Helrschel Alverage ﬂl _
] . i - i _L T (Singh & Martin 2022) - / y ) \
12' 3.5 N i O&HO94=0; bare0 . This suggests that the
] L - i O&H94=1; bare5 (OH2) . .
L3.0 40~ I -—— O&HY4=10; thin0 § opacity laws we use in our
o B " -== O&H94=11; thin5 (OH5a) diati f Ivsi
S 00’ 1 155 30: I " NIKA2 § Map . radiative transter analysis,
' 1 . 12 - 1 — .
S _ _ ™ ETT I 1 which are also used
g 2.0 5 F | E elsewhere throughout the
06'] 1.5 - | - literature, do not accurately
_ 0 tof | . \describe the observed ,3”/
- 0.5 - i .
03" o k[ ) oL ! it é ! ! _3
o . . . 0.0 p
4018™125  00°  17M48°  36°
RA (J2000) It is important to accurately determine dust opacities and grain size

distributions! They affect the physical parameters you are interested

Scibelli et al., 2023 . . .
heete in determining!! Such as density, temperature, mass, etc.,
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Back to... Radio Telescopes and Radiometers
(ERA Chap. 3)

/ Topic overview: \

Sections in 3.1: Antenna Fundamentals
. = Sectionsin 3.2: Reflector Antennas
s * Sections in 3.3: Two-Dimensional Aperture Antennas
Sections in 3.4: Waveguides
Sections in 3.5: Radio Telescopes
Sectionsin 3.5: Radiometers

Qections in 3.6: Interferometers /

SPACE FRENS

CHATTY DOOTER

SMOL BOUNCER
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3.1 Antenna Fundamentals

Remember our simple dipole:

Fig. 3.1

Where the electric currentin the wire is defined as the flow rate of

the electric charge along the wire: dq
I=—. (3.4
dt
On the z-axis, written where vis the instantaneous flow velocity
of the charges d dg dz d
=4 Y& _4, 0 5
dt dzdt dz
i ) = bl National
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3.1 Antenna Fundamentals

Remember our simple dipole:

Fig. 3.1

Where the electric currentin the wire is defined as the flow rate of

the electric charge along the wire: dq
I = —. (3.4) (Electrons together move slowlyin a\
d wire, like water out of a garden
On the z-axis, written where v is the instantaneous flow velocity \ hose, so Larmor’s nonrelativistic
of the charges dq dq dz dg equation can be used!
= —=—— = —7y, 3.5 see book example!
dt dzdt dz 3-5) \ ple) J
. . ol National
ASTR 5340 - Introduction to Radio Astronomy ﬁ Radio
. ; — GREEN BA'[‘DK S8 Astronomy
Contact: sscibell@nrao.edu mew NRAO e
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Remember from Chapter 2! The Power pattern
from a ‘jerk’ of a particle looks like a donut ¥

3.1 Antenna Fundamentals

|
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Larmor radiation from a single charged particle
ASTR 5340 - Introduction to Radio Astronomy

Contact: sscibell@nrao.edu

Fig. 2.23

[




3.1 Antenna Fundamentals

Remember from Chapter 2! The Power pattern
from a ‘jerk’ of a particle looks like a donut ¥
14
N
X
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Fig. 2.23

P « sin’ 0.

r > | centered on the antenna

m=5(%)

éne power pattern we use to describe\

power from an antenna! This time, we are
talking about a “charge distribution” where,

(3.14)

And the time-averaged total power emitted is
obtained by integrating the Poynting flux over
the surface area of a sphere of any radius

Larmor radiation from a single charged particle

ASTR 5340 - Introduction to Radio Astronomy
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3.1 Antenna Fundamentals

Most practical dipoles are half-wave dipoles

Half-wave dipoles ,
or quarter-wave ground-plane verticals

+A/4
Lower half of dipole is the reflection of the
vertical - same process as a mirror

J

<z 2 o 2 < 1

L n/4
Fig. 3.2

A ground-plane vertical antenna is just half of a
dipole above a conducting plane
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