<u>Point-source</u> sensitivity for a single antenna,

$$\sigma_S = \frac{2kT_s}{A_e(\Delta\nu\,\tau)^{1/2}} \tag{3.201}$$

And for a two-element interferometer (where A_e is the effective collecting area of each element):

$$\sigma_S = \frac{2^{1/2} k T_s}{A_e (\Delta \nu \tau)^{1/2}}$$
(3.202)

The point-source sensitivity is 2^{1/2} times better than the sensitivity of each antenna, but 2^{1/2} times worse than that of a single dish whose area is that of two antennas

Point-source sensitivity for a single antenna,

$$\sigma_S = \frac{2kT_s}{A_e(\Delta\nu\,\tau)^{1/2}} \tag{3.201}$$

And for a two-element interferometer (where A_{e} is the effective collecting area of each element):

$$\sigma_S = \frac{2^{1/2} k T_s}{A_e (\Delta \nu \tau)^{1/2}}$$
(3.202)

2)

The point-source sensitivity is $2^{1/2}$ times better than the sensitivity of each antenna, but $2^{1/2}$ times worse than that of a single dish whose area is that of two antennas

Two antennas multiply two independent sets of voltages together to make a visibility and thus there are two independent sets of noise multiplied

Information contained in the two independent square-law detector outputs have been discarded together they have $2^{1/2}$ times the sensitivity of a single dish

Combined with the independent correlator output, the total sensitivity is $(2 + 2)^{1/2}$ which is 2x the sensitivity of the single dish

GREEN BANK OBSERVATORY

Astronomy

Observatory

NRA(

Contact: sscibell@nrao.edu

An interferometer with N dishes contains N(N - 1)/2 independent two-element interferometers. So long as the signal from each dish can be amplified *coherently* before it is spit up to be multiplied by the signals from the N-1 other antennas, its point-source rms noise (per beam) is

$$\sigma_{S} = \frac{2kT_{s}}{A_{e}[N(N-1)\,\Delta\nu\,\tau]^{1/2}}.$$
 (3.203)

The VLA with N = 27 dishes each d = 25 m in diameter has a sensitivity of a dish with $D = [N(N - 1)]^{1/4} d = [27(26)^{1/4}] 25 m = 129 m!$

BEWARE! The brightness sensitivity of an interferometer is **worse than a single dish** because the synthesized beam solid angle of an interferometer is much smaller than the beam solid angle of a single dish of the same total effective area

BEWARE! The brightness sensitivity of an interferometer is **worse than a single dish** because the synthesized beam solid angle of an interferometer is much smaller than the beam solid angle of a single dish of the same total effective area

Interferometer resolution: $\theta \sim \lambda/b$ radians Single dish resolution: $\theta \sim \lambda/D$ radians Smaller by factor of $\sim (D/b)^2$ that defines the area filling factor

In order to be sensitive to emission at different scales, one often needs to **observe in different baseline configurations**

ALMA tries to compensate to increase sensitivity and recover extended emission with, in addition to different 'configurations' of the 12m dishes:

- A compact 'ACA' setup with the use of 12 smaller 7m dishes
- A total power array made up of 4 of the 12m dishes

Ideally it would be best to combine with single-dish data, e.g., the GBT!

Credit: ALMA (ESO/NAOJ/NRAO)

ALMAACA + 12m image of the Prestellar core L1544

VLA+GBT image of the Orion Nebula HII region

3.6 cm (8.435 GHz) Combined with 'feathering' technique

Often, you'll see maps from any radio telescopes either listed with **units of 'Jy/beam' or 'K'** Here I show single dish IRAM 30m and GBT maps in different units, mJy/beam and K km/s, respectively:

Emission Mechanisms

Emission Mechanisms

Spectral Line Definition:

Spectral Lines are narrow (v << Δv) emission or absorption features in the spectra of gaseous and ionized sources and are intrinsically <u>quantum</u> <u>phenomena</u> because energy is quantized (E = hv) leading to lines occurring at specific frequencies

Main topics to cover:

- Molecular Emission
- Recombination Lines
- HI 21cm line
- Masers

Spectral Line Definition:

Spectral Lines are narrow (v << Δv) emission or absorption features in the spectra of gaseous and ionized sources and are intrinsically <u>quantum</u> <u>phenomena</u> because energy is quantized (E = hv) leading to lines occurring at specific frequencies

Main topics to cover:

- Molecular Emission
- Recombination Lines
- HI 21cm line
- Masers

Spectral Line Definition:

Spectral Lines are narrow (v << Δv) emission or absorption features in the spectra of gaseous and ionized sources and are intrinsically <u>quantum</u> <u>phenomena</u> because energy is quantized (E = hv) leading to lines occurring at specific frequencies

Main topics to cover:

- Molecular Emission
- Recombination Lines
- HI 21cm line
- Masers

Definition: The study of the formation and destruction of molecules in the Universe, their interaction with radiation, and their feedback on physics of the environments

I write about molecules with great diffidence, having not yet rid myself of the tradition that **atoms are physics, but molecules are chemistry**, but the new conclusions that hydrogen is abundant seems to make it likely that the above mentioned elements H, O, and N will frequency form molecules

- Sir A. Eddington, 1937

Kno	Known Interstellar Molecules											
2 Atoms	s	3 Atoms 4 Atoms 5 Atoms		6 Atoms	7 Atoms	8 Atoms	9 Atoms					
CH S CN S CH ⁺ C OH H CO M H₂ C SiO F CS C	SiN SO ⁺ CO ⁺ HF N ₂ CF ⁺ PO O ₂	H_2O HCO^+ HCN OCS HNC H_2S N_2H^+ C_2H	H_3^+ SiCN AINC SiNC HCP CCP AIOH H_2O^+	$\begin{array}{c} NH_3\\ H_2CO\\ HNCO\\ H_2CS\\ C_2H_2\\ C_3N\\ HNCS\\ HOCO^+\\ \end{array}$	C ₃ N ⁻ PH ₃ HCNO HOCN HSCN HOOH /-C ₃ H ⁺ HMgNC	$\begin{array}{rcrcr} HC_{3}N & HNCNH \\ HCOOH & CH_{3}O \\ CH_{2}NH & NH_{3}D^{+} \\ NH_{2}CN & H_{2}NCO^{+} \\ H_{2}CCO & NCCNH^{+} \\ C_{4}H & CH_{3}CI \\ SiH_{4} & MgC_{3}N \\ c^{-}C_{3}H_{2} & HC_{3}O^{+} \\ CH_{2}CN & NH_{2}OH \\ C_{5} & HC_{3}S^{+} \\ SiC_{4} & H_{2}CCS \\ H_{2}CCC & C_{4}S \\ CH_{4} & CHOSH \\ HCCNC & HCSON \\ HNCCC & HC_{3}O \\ H_{2}COH^{+} & NaCCCN \\ C_{4}H^{-} & MgC_{3}N^{+} \\ CNCHO \end{array}$	HNCNH CH_3O NH_3D^+ H_2NCO^+ $NCCNH^+$ CH_3CI MgC_3N HC_3O^+ NH_3O^+	$\begin{array}{c} CH_3OH\\ CH_3CN\\ NH_2CHO\\ CH_3SH\\ C_2H_4\\ C_5H\\ CH_3NC\\ H_3NC\\ H_2CHO\\ H_2CHO\\ H_2CHO\\ H_3NC\\ H_3C$	CH ₃ CHO CH ₃ CCH CH ₃ NH ₂ CH ₂ CHCN HC ₅ N C ₆ H ∂C2H4O CH2CHOH C-H-	$HCOOCH_3$ CH_3C_3N C_7H CH_3COOH H_2C_6 CH_2OHCHO HC_6H CH_2CHCHO CH_2CHCHO CH_2CHCHO	$\begin{array}{c} CH_3OCH_3\\ CH_3CH_2OH\\ CH_3CH_2CN\\ HC_7N\\ CH_3C_4H\\ CH_3C_4H\\ C_8H\\ CH_3CONH_2\\ C_8H \end{array}$	$\begin{array}{c} CH_2CHCH_3\\ CH_3CH_2SH\\ HC_7O\\ CH_3NHCHO\\ H_2CCCHCCH\\ H_2CCCHCCH\\ HCCCHCHCN\\ H_2CCHC_3N \end{array}$
SO A SIS C C ₂ S NO H HCI S NaCI T AICI A KCI N AIF N SIC F CP S NH F	AIO CN ⁺ SH ⁺ HCI ⁺ SH SH TIO ArH ⁺ NS ⁺ HeH ⁺ VO PO ⁺ SiP FeC	SO_2 HCO HNO HCS ⁺ SiC_2 C_2S C_3 CC_2 C_2S C_2O MgNC NH ₂ NaCO N ₂ O NaCO NaCO	H_2CI^+ KCN FeCN HO ₂ TIO ₂ CCN SiCSi S ₂ H HCS HSC NCO CaNC NCS MgC ₂ HSO	$C_{3}O$ $I-C_{3}H$ $HCNH^{+}$ $H_{3}O^{+}$ $C_{3}S$ $c-C_{3}H$ $H_{2}CN$ SiC_{3} CH_{3}	CO HMMgNC) HCCO HCNN NH+ HONO)+ MgCCH) HCCS 		$\begin{array}{c} H_2C_4\\ C_5S\\ HC_3NH^+\\ C_5N\\ HC_4R\\ HC_4R\\ C_5C_3NH\\ HC_4R\\ C_5N\\ HC_4R\\ C_5NH\\ C_5NH\\ C_5NH\\ C_5NH\\ C_5NH\\ C_5NH\\ C_5NH\\ C_5NH\\ C_5O\\ HCCCCH\\ HCSCCH\\ HCSCCH\\ C_5O\\ HCCNH^+\\ C_5CCH\\ HCSCCN\\ $	$\begin{array}{c} C_{6}\tilde{H} \\ CH_{3}NCO \\ HC_{5}O \\ HOCH_{2}CN \\ HC_{4}NC \\ HC_{4}NC \\ HC_{3}HNH \\ c-O_{3}HCCH \\ MgC_{5}N \\ CH_{2}C_{3}N \\ HH_{2}C_{5} \\ NC_{4}NH^{+} \\ MgC_{5}N^{+} \\ \hline \begin{array}{c} 12 \\ Atoms \\ C_{6}H_{6} \\ nC \\ H \\ CN \\ \end{array}$	CH_2CCHCN NH_2CH_2CN CH_3CHNH CH_3SiH_3 NH_2CONH_2 $HCCCH_2CN$ CH_2CHCCH MgC_6H $C_2H_3NH_2$ $HCCCHCCH$ $HCCCHCCC$ C_7N CH_3CHCO MgC_6H^+	10 Atoms CH_3COCH_3 $HOCH_2CH_2OH$ CH_3CH_2CHO CH_3CH_2CHO CH_3CHCH_2O CH_3CHCH_2O CH_3OCH_2OH H_2CCCHC_3N C_6H_4 C_2H_5NCO HC_7NH^+ $CH_3CHCHCN$ CH_2CCH_2CN CH_2CH_2CN NH_2COCH_2OH	11 Atoms HC ₉ N CH ₃ C ₆ H C ₂ H ₅ OCHO CH ₃ COCH ₂ OH C ₅ H ₆ NH ₂ CH ₂ CH ₂ OH CH ₂ CCHC ₄ H C ₁₀ H C ₄ H ₅ CN	
		MIGCIN		La	298 M st Updat	olecules ed: 2 Jan 2024		<i>i</i> -C ₃ H ₇ CN C ₂ H ₅ OCH ₃ 1-C ₅ H ₅ CN 2-C ₅ H ₅ CN <i>n</i> -CH ₃ CH ₂ CH ₂ CH ₂ OH <i>i</i> -CH ₃ CH ₂ CH ₂ OH <i>i</i> -C ₄ H ₈ 1-C ₅ H ₄ CCH	4	13+ Atoms C ₄ $C_{\theta}H_{5}CN$ 2- $HC_{11}N$ C_{θ} $c - C_{5}H_{4}CCH_{2}$ C_{4} $c - C_{6}H_{5}CCH$ C_{5} $1 - C_{10}H_{7}CN$ 2- $2 - C_{10}H_{7}CN$ 2-	C ₉ H ₈ 2-C ₉ H ₇ CN C ₆₀ C ₆₀ ⁺ C ₇₀	
			HOCOOH H ₂ C ₃ N	2-C₅H₄CCH		М	cGuire 2022					

							Create	d with ADTRONOL #2024 8.0	Facility	#	Facility	
Knov	vn Inters	stellar Mo	blecules				Create	bmcguir2.github.io/astromol	IRAM 30-m	64	SMA	2
								Nicouire 2022 Apro 239, 30	NRAO 36-ft	33	SEST	2
2 Atoms	3 Atoms	4 Atoms	5 Atoms	6 Atoms	7 Atoms	8 Atoms	9 Atoms		GBT 100-m	28	SOFIA	2
CH SIN CN SO ⁺	H₂O H₃⁺ HCO⁺ SiCN	$H_3 = C_3 N^2$ $H_2 CO = P H_3$	HC ₃ N HNCNH HCOOH CH ₃ O	CH ₃ OH CH ₃ CN	CH ₃ CHO CH ₃ CCH	HCOOCH ₃ CH ₃ C ₃ N	CH ₃ OCH ₃ CH ₃ CH ₂ OH	CH ₂ CHCH ₃ CH ₃ CH ₂ SH	NRAO/ARO 12-m	27	Hat Creek 20-ft	2
CH+ CO+	HCN AINC	HNCO HCNO	CH ₂ NH NH ₃ D ⁺	NH ₂ CHO	CH ₃ NH ₂	C ₇ H CH-COOH	CH ₃ CH ₂ CN		Yebes 40-m	19	IRTF	2
CO N ₂	HNC HCP	C_2H_2 HSCN	H ₂ CCO NCCNH ⁺			H_2C_6	CH ₃ C ₄ H	H ₂ CCCHCCH	Nobeyama 45-m	15	PdBI	2
SiO PO	H_2S CCP N_2H^+ AIOH	C ₃ N HOOH HNCS /-C ₃ H⁺	SiH ₄ MgC ₃ N	C₅H CH₃NC	С ₆ н с-С₂Н₄О	HC ₆ H	C ₈ H CH₃CONH₂	HCCCHCHCN H ₂ CCHC ₃ N	NRAO 140-ft	13	OVRO	2
CS O ₂ SO AIO	C ₂ H H ₂ O ⁺ SO ₂ H ₂ Cl ⁺	HOCO⁺ HMgNC C₂O HCCO	c-C₃H₂ HC₃O⁺ CH₂CN NH₂OH	HC₂CHO H₂C₄	CH₂CHOH C∝H⁻	CH₂CHCHO CH₂CCHCN	C ₈ H ⁻		Bell 7-m	8	MWO 4.9-m	2
SiS CN-	HCO KCN	I-C ₃ H CNCN	C_5 HC_3S^+		CH ₃ NCO		10 Atoms CH ₃ COCH ₃	11 Atoms HC₀N	ALMA	8	Hubble	1
C_2 SH ⁺	HCS ⁺ HO ₂	H ₃ O ⁺ MgCCH	H_2CCC C_4S	C₅N	HOCH ₂ CN	CH ₃ SiH ₃			\mathbf{SMT}	7	IRAS	1
NO HCI⁺ HCI SH	HOC^+ HO_2 SiC ₂ CCN	C_3S HCCS c- C_3H HNCN	CH₄ CHOSH HCCNC HCSCN	HC₄H HC₄N	HC₄NC HC₃HNH	NH ₂ CONH ₂ HCCCH ₂ CN	CH ₃ C ₅ N	CH ₃ COOCH ₃	Herschel	7	BIMA	1
NaCl TiO AICI ArH+	C₂S SiCSi C₂ S₂H	HC_2N H_2NC H_2CN $HCCS^+$	HNCCC HC₃O H₅COH⁺ NaCCCN	с-Н₂С₃О СН₂СNН	c-C₃HCCH MaC₂N	CH₂CHCCH MaC₂H	CH ₃ CHCH ₂ O CH ₃ OCH ₂ OH	CH₃COCH₂OH C₅H ₆	Parkes	5	NRL 85-ft	1
KCI NS ⁺	CO ₂ HCS	SiC ₃ CH ₃ ⁺	C_4H^- MgC ₃ N ⁺		CH ₂ C ₃ N		H₂CCCHC₃N C₌H₄	NH₂CH₂CH₂OH CH₂CCHC₄H	FCRAO 14-m	5	ATCA	1
PN VO	$C_2 O NCO$	Сп ₃	CINCHO	SiH ₃ CN	NC₄NH⁺	HCCCHCCC		$C_{10}H^{-}$	ISO	5	Mitaka 6-m	1
SiC PO ⁺ CP SiP	MgNC CaNC NH₂ NCS			MgC₄H CH₃CO⁺	MgC₅N+	C ₇ N⁻ CH₃CHCO	CH ₃ CHCHCN	0 ₄ Π ₅ ΟΝ	APEX	4	McMath Solar Telescope	1
NH FeC	NaČN MgC ₂	*	>300!	H₂ČCCS	12 Atoms	MgČ ₆ H⁺	CH₂CCH₃CN CH₂CHCH₂CN		Onsala 20-m	4	UKIRT	1
	MgCN			HCSCCH	n-C ₃ H ₇ CN		NH ₂ COCH ₂ OH		KPNO 4-m	4	Odin	1
		2 9 8 N	lolecules	C₅O HCCNCH⁺	$C_2H_5OCH_3$		13+ Atoms	C ₉ H ₈ 2-C ₂ H ₂ CN	Effelsberg 100-m	4	FUSE	1
		\checkmark		C₅H⁺ c-C₌H	1-C₅H₅CN 2-C₅H₅CN		HC ₁₁ N	C ₆₀	Algonquin 46-m	3	KAO	1
		Last Upda	ted: 2 Jan 2024			Н	c-C₅H₄CCH₂ c-C₅H₅CCH	C ₆₀ + C ₇₀	Mt. Wilson	3	Mt. Hopkins 60-in	1
				HMgCCCN MgC₄H⁺	<i>i</i> -C ₄ H ₈		1-C ₁₀ H ₇ CN		Spitzer	3	Aerobee-150 Rocket	1
				H₂C₃H⁺ HOCOOH	1-C₅H₄CCH 2-C₅H₄CCH		2-01017011		Haystack	3	Millstone Hill 84-ft	1
				H_2C_3N			N	AcGuire 2022	CSO	2	Goldstone	1

The first molecules detecter	ed in the ISM were CH, CN
and CH+ during the mid- tw	ventieth century via an
optical absorption spectros	scopy (McKellar, 1940)

Facility # Facility # IRAM 30-m SMA $\mathbf{2}$ 64 NRAO 36-ft 33 SEST $\mathbf{2}$ GBT 100-m SOFIA 28 $\mathbf{2}$ NRAO/ARO 12-m Hat Creek 20-ft 27 $\mathbf{2}$ Yebes 40-m 19IRTF $\mathbf{2}$ Nobeyama 45-m PdBI 15 $\mathbf{2}$ NRAO 140-ft OVRO $\mathbf{2}$ 13Bell 7-m MWO 4.9-m $\mathbf{2}$ 8 ALMA 8 Hubble 1 SMT IRAS 7 1 BIMA Herschel 7 1 NRL 85-ft Parkes 51 FCRAO 14-m ATCA $\mathbf{5}$ 1 ISO Mitaka 6-m 5 1 APEX McMath Solar Telescope 4 1 Onsala 20-m UKIRT 4 1 KPNO 4-m Odin 4 1 Effelsberg 100-m FUSE $\mathbf{4}$ 1 Algonquin 46-m KAO 3 1 Mt. Wilson Mt. Hopkins 60-in 3 1 Spitzer 3 Aerobee-150 Rocket 1 Haystack 3 Millstone Hill 84-ft 1 CSOGoldstone 2 1

McGuire 2022

McGuire 2022

Facility	#	Facility	#
IRAM 30-m	64	SMA	2
NRAO 36-ft	33	SEST	2
GBT 100-m	28	SOFIA	2
NRAO/ARO 12-m	27	Hat Creek 20-ft	2
Yebes 40-m	19	IRTF	2
Nobeyama 45-m	15	PdBI	2
NRAO 140-ft	13	OVRO	2
Bell 7-m	8	MWO 4.9-m	2
ALMA	8	Hubble	1
\mathbf{SMT}	7	IRAS	1
Herschel	7	BIMA	1
Parkes	5	NRL 85-ft	1
FCRAO 14-m	5	ATCA	1
ISO	5	Mitaka 6-m	1
APEX	4	McMath Solar Telescope	1
Onsala 20-m	4	UKIRT	1
KPNO 4-m	4	Odin	1
Effelsberg 100-m	4	FUSE	1
Algonquin 46-m	3	KAO	1
Mt. Wilson	3	Mt. Hopkins 60-in	1
Spitzer	3	Aerobee-150 Rocket	1
Haystack	3	Millstone Hill 84-ft	1
CSO	2	Goldstone	1

Green Bank Radio Telescope, 100m, in West Virginia

140 foot telescope

Facility	#	Facility	#
IRAM 30-m	64	SMA	2
NRAO 36-ft	33	SEST	2
GBT 100-m	28	SOFIA	2
NRAO/ARO 12-m	27	Hat Creek 20-ft	2
Yebes 40-m	19	IRTF	2
Nobeyama 45-m	15	PdBI	2
NRAO 140-ft	13	OVRO	2
Bell 7-m	8	MWO 4.9-m	2
ALMA	8	Hubble	1
SMT	7	IRAS	1
Herschel	7	BIMA	1
Parkes	5	NRL 85-ft	1
FCRAO 14-m	5	ATCA	1
ISO	5	Mitaka 6-m	1
APEX	4	McMath Solar Telescope	1
Onsala 20-m	4	UKIRT	1
KPNO 4-m	4	Odin	1
Effelsberg 100-m	4	FUSE	1
Algonquin 46-m	3	KAO	1
Mt. Wilson	3	Mt. Hopkins 60-in	1
Spitzer	3	Aerobee-150 Rocket	1
Haystack	3	Millstone Hill 84-ft	1
CSO	2	Goldstone	1

Importance of molecules in space!

Probes of a variety of **physical** (temperature, density, ionization, gas kinematics) and **environmental** (heating and cooling gas) **conditions**!

Diffuse Clouds:

- densities ~ 1- 10 cm $^{\text{-3}}$
- T ~ 100 K
- Starlight (UV radiation) can penetrate

Dense Clouds:

- densities $\sim 10^3$ $10^6\,cm^{\text{-}3}$
- T ~ 10 100 K
- Starlight cannot penetrate

"Hot Cores":

- densities ~ 10^3 $10^6\,cm^{\text{-}3}$
- T ~ 10 300 K
- An embedded forming star

Importance of molecules in space!

Probes of a variety of <u>chemical conditions</u> (chemical processes, "Age" indicators, prebiotic chemistry (origin of life?)

Kn	Known Interstellar Molecules													
2 Aton	ns	3 Aton	ns	4 Atom	s	5 Atoms		6 Atoms	7 Atoms	8 Atoms	9 Atoms			
CH CN CH ⁺ OH CO H₂ SiO CS SO	SiN SO ⁺ CO ⁺ HF N ₂ CF ⁺ PO O ₂	H_2O HCO^+ HCN OCS HNC H_2S N_2H^+ C_2H SO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H_3^+ N * SiCN H AINC H SINC H HCP C CCP C AIOH H H_2O^+ H H_2CI^+ C KCN // FeCN H * HO ₂ H * HO ₂ H * HO ₂ H * HO ₂ H CCN C SiCSi H S ₂ H H HCS S HSC C NCO C CaNC NCS N MgC ₂ HSO	NH_{3} $H_{2}CO$ $H_{2}CS$ $C_{2}H_{2}$ $C_{3}N$ HNCS $HOCO^{+}$ $C_{-}O$	C ₃ N ⁻ PH ₃ HCNO HOCN HSCN HOOH /-C ₃ H ⁺ HMgNC HCCO	HC_3N HCOOH CH_2NH NH_2CN H_2CCO C_4H SiH_4 $c-C_3H_2$ CH	HNCNH CH ₃ O NH ₃ D⁺ H ₂ NCO⁺ NCCNH⁺ CH ₃ CI MgC ₃ N HC ₃ O⁺	$CH_{3}OH$ $CH_{3}CN$ $NH_{2}CHO$ $CH_{3}SH$ $C_{2}H_{4}$ $C_{5}H$ $C_{5}H$ $H_{2}CHO$ $H_{2}CHO$	CH_3CHO CH_3CCH CH_3NH_2 CH_2CHCN HC_5N C_6H $c-C_2H_4O$ CH_2CHOH	HCOOCH ₃ CH_3C_3N C_7H CH_3COOH H_2C_6 CH_2OHCHO HC_6H CH_2CHCHO CH_2CHCHO	$\begin{array}{c} CH_3OCH_3\\ CH_3CH_2OH\\ CH_3CH_2CN\\ HC_7N\\ CH_3C_4H\\ C_8H\\ CH_3CONH_2\\ C_8H \end{array}$	$CH_{2}CHCH_{3}$ $CH_{3}CH_{2}SH$ $HC_{7}O$ $CH_{3}NHCHO$ $H_{2}CCCHCCH$ $HCCCHCCHCN$ $H_{2}CCHC_{3}N$	
SC SiS NS C ₂ NO HCI AICI AICI AIF PN SIC CP NH	COH⁺ ⁺ COH⁺ ⁺ HCH STOTH Stoth STOTH Stoth	$\begin{array}{c} SC_2\\ HCO\\ HNO\\ HCS^+\\ HOC^+\\ SiC_2\\ C_2S\\ C_3\\ CO\\ C_2O\\ C_2O\\ C_2O\\ C_2O\\ NH_2\\ NaCO\\ NH_2\\ NaCO\\ NgCN\\ \end{array}$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	C ₃ O ₃ H H CNH ⁺ H ₃ O ⁺ C ₃ O C ₃ S CC ₃ H H ₂ CN SCC ₃ CH ₃	2₃H CNCN CNH+ HONO ₃O+ MgCCH ₃S HCCS C₃H HNCN C₂N H₂NC ₂CN HCCS+ ¡C₃ CH₃+ H₃ H₂	C ₁₂ CN C ₅ SiC ₄ H ₂ CCC CH ₄ HCCNC H ₂ COH ⁺ C ₄ H ⁻ CNCHO >3000!	HC ₃ S ⁺ H ₂ CCS C ₄ S CHOSH HCSCN HC ₃ O NaCCCN MgC ₃ N ⁺	$C_{5}S$ $HC_{3}NH^{+}$ $C_{5}N$ $HC_{4}H$ $HC_{4}N$ $CH_{2}C_{3}O$ $CH_{2}CNH$ $C_{5}N^{-}$ $HNCHCN$ $SiH_{3}CN$ $MGC_{4}H$ $CH_{3}CO^{+}$ $H_{2}CCCS$ $CH_{2}CCH$	CH ₃ NCO HC ₅ O HOCH ₂ CN HC ₄ NC HC ₃ HNH c-C ₃ HCCH MgC ₅ N CH ₂ C ₃ N /H ₂ C ₅ NC ₄ NH ⁺ MgC ₅ N ⁺ 12 Atoms C ₆ H ₆ <i>r</i> -C ₃ H ₂ CN	$\begin{array}{c} NH_2CH_2CN\\ CH_3CHNH\\ CH_3SiH_3\\ NH_2CONH_2\\ HCCCH_2CN\\ CH_2CHCCH\\ MgC_6H\\ C_2H_3NH_2\\ HOCHCHOH\\ HCCCHCCC\\ C_7N\\ CH_3CHCO\\ MgC_6H^+\\ \end{array}$	10 Atoms CH_3COCH_3 $HOCH_2CH_2OH$ CH_3CH_2CHO CH_3CH_2CHO CH_3CHCH_2O CH_3CHCH_2O CH_3CHCH_2OH H_2CCCHC_3N $C_{\theta}H_4$ $C_{2}H_{5}NCO$ $HC_{7}NH^{+}$ $CH_{3}CHCHCN$ $CH_{2}CCH_{2}CN$ $CH_{2}CHCH_{2}CN$ $NH_{2}COCH_{2}OH$
		gert		La	298 M st Updat	olecules ed: 2 Jan 2024		C_5O HCCNCH+ C_5H HC ₄ S HMgCCCN MgC ₄ H+ H ₂ C ₃ H+ HOCOOH H C N	$i-C_3H_2CN$ $C_2H_5OCH_3$ $1-C_5H_5CN$ $2-C_5H_5CN$ $n-CH_3CH_2CH_2OH$ $i-CH_3CH_2CH_2OH$ $i-C_4H_8$ $1-C_5H_4CCH$ $2-C_5H_4CCH$	H 1	13+ Atoms C ₆ H ₅ CN HC ₁₁ N c-C ₅ H ₄ CCH ₂ c-C ₆ H ₅ CCH 1-C ₁₀ H ₇ CN 2-C ₁₀ H ₇ CN	C ₉ H ₈ 2-C ₉ H ₇ CN C ₆₀ C ₆₀ ⁺ C ₇₀		
								12031			111			

<u>Complex</u> Organic <u>Molecules</u>

- Contains at least 6 or more atoms
- Contains at least one carbon atom

Herbst & van Dishoeck 2009

Of interest to astrochemists and astrobiologists, COMs are the **precursor molecules of prebiotic chemistry**

Understanding the formation of COMs in the various physical conditions throughout our universe is an active area of research!

Importance of molecules in space!

Probes of a variety of <u>chemical conditions</u> (chemical processes, "Age" indicators, prebiotic chemistry (origin of life?)

Kr	NOW	n Ir	nters	stella	r Mc	lecul	es				Created I N	with ASTROMOL v2021.8.0 bmcguir2.github.io/astromol McGuire 2022 ApJS 259, 30	Γ	Com
2 Ato	ms	3 Ator	ns	4 Atom	s	5 Atoms		6 Atoms	7 Atoms	8 Atoms	9 Atoms			<u>C</u> OIII
CH CN ⁺ OH CO H₂ SO CS SO	$\begin{array}{c} \text{SiN} \\ \text{SO}^+ \\ \text{CO}^+ \\ \text{HF} \\ \text{N}_2 \\ \text{CF}^+ \\ \text{PO} \\ \text{O}_2 \\ \text{AIO} \\ \text{OO}_2 \end{array}$	$\begin{array}{c} H_2O\\ HCO^+\\ HCN\\ OCS\\ HNC\\ H_2S\\ N_2H^+\\ C_2H\\ SO_2 \end{array}$	H_3^+ SiCN AINC SiNC HCP CCP AIOH H_2O^+ H_2CI^+	$\begin{array}{c} \mathrm{NH}_3\\\mathrm{H}_2\mathrm{CO}\\\mathrm{H}\mathrm{NCO}\\\mathrm{H}_2\mathrm{CS}\\\mathrm{C}_2\mathrm{H}_2\\\mathrm{C}_3\mathrm{N}\\\mathrm{H}\mathrm{NCS}\\\mathrm{HOCO}^+\\\mathrm{C}_3\mathrm{O}\end{array}$	C ₃ N ⁻ PH ₃ HCNO HOCN HSCN HOOH <i>I</i> -C ₃ H ⁺ HMgNC HCCO	$\begin{array}{l} \text{HC}_3\text{N} \\ \text{HCOOH} \\ \text{CH}_2\text{NH} \\ \text{NH}_2\text{CN} \\ \text{H}_2\text{CCO} \\ \text{C}_4\text{H} \\ \text{SiH}_4 \\ \text{c-C}_3\text{H}_2 \\ \text{CH}_2\text{CN} \end{array}$	HNCNH CH ₃ O NH ₃ D⁺ H ₂ NCO⁺ NCCNH⁺ CH ₃ CI MgC ₃ N HC ₃ O⁺ NH ₂ OH	$\begin{array}{c} CH_{3}OH\\ CH_{3}CN\\ NH_{2}CHO\\ CH_{3}SH\\ C_{2}H_{4}\\ C_{5}H\\ CH_{3}NC\\ HC_{2}CHO\\ H_{2}C_{4}\end{array}$	$\begin{array}{c} CH_3CHO\\ CH_3CCH\\ CH_3NH_2\\ CH_2CHCN\\ HC_5N\\ C_6H\\ c-C_2H_4O\\ CH_2CHOH\\ C_6H^-\\ C_6H^-\\ \end{array}$	$\begin{array}{c} HCOOCH_3\\ CH_3C_3N\\ C_7H\\ CH_3COOH\\ H_2C_6\\ CH_2OHCHO\\ HC_6H\\ CH_2CHCHO\\ CH_2CHCHO\\ CH_2CCHCN\\ \end{array}$	$\begin{array}{c} CH_3OCH_3\\ CH_3CH_2OH\\ CH_3CH_2CN\\ HC_7N\\ CH_3C_4H\\ C_8H\\ CH_3CONH_2\\ C_8H \end{array}$	CH ₂ CHCH ₃ CH ₃ CH ₂ SH HC ₇ O CH ₃ NHCHO H ₂ CCCHCH H ₂ CCHC ₃ N		ContaConta
SiS NS C₂ NGCI NaCI AICI AICI AICI AICI AIF PN SiC CP NH	CN [:] OH ⁺ SH ⁺ HCI ⁺ SH TiO ArH ⁺ NS ⁺ HeH ⁺ VO PO ⁺ SiP FeC	HCO HNO HCS ⁺ HOC ⁺ SiC ₂ C ₂ S C ₃ CO ₂ CH ₂ C ₂ O MgNC NH ₂ NaCN N ₂ O MgCN	$\begin{array}{c} {\sf KCN} \\ {\sf FeCN} \\ {\sf HO}_2 \\ {\sf TiO}_2 \\ {\sf CCN} \\ {\sf SiCSi} \\ {\sf S}_2 {\sf H} \\ {\sf HCS} \\ {\sf HSC} \\ {\sf NCO} \\ {\sf CaNC} \\ {\sf NCS} \\ {\sf MgC}_2 \\ {\sf HSO} \end{array}$	$\frac{1}{1}C_{3}H$ HCNH ⁺ H ₃ O ⁺ C ₃ S c-C ₃ H HC ₂ N H ₂ CN SiC ₃ CH ₃	CNCN HONO MgCCH HCCS HNCN H ₂ NC HCCS ⁺ CH ₃ ⁺	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ NCO HC ₅ O HOCH ₂ CN HC₄NC HC₄NHH c-C₃HCCH MgC ₅ N CH ₂ C ₃ N <i>H</i> ₂ C ₅ NC₄NH ⁺ MgC ₆ N ⁺ 12 Atoms C ₆ H ₆ <i>n</i> -C₃H ₇ CN	$\label{eq:hardware} \begin{split} NH_2CH_2CN \\ CH_3CHNH \\ CH_3SiH_3 \\ NH_2CONH_2 \\ HCCCH_2CN \\ CH_2CHCCH \\ MgC_6H \\ C_2H_3NH_2 \\ HOCHCHOH \\ HCCCHCCC \\ C_7N^- \\ CH_3CHCO \\ MgC_6H^+ \end{split}$	$\begin{array}{c} {\sf CH}_3{\sf COCH}_3 \\ {\sf HOCH}_2{\sf CH}_2{\sf CH} \\ {\sf CH}_3{\sf CH}_2{\sf CHO} \\ {\sf CH}_3{\sf CH}_2{\sf CHO} \\ {\sf CH}_3{\sf CHCH}_2{\sf OH} \\ {\sf H}_2{\sf CCCHC}_3{\sf N} \\ {\sf C}_6{\sf H}_4 \\ {\sf C}_2{\sf H}_5{\sf NCO} \\ {\sf HC}_7{\sf NH}^+ \\ {\sf CH}_3{\sf CHCHCN} \\ {\sf CH}_2{\sf CCH}_2{\sf CN} \\ {\sf NH}_2{\sf COCH}_2{\sf OH} \\ \end{array}$	HC_9N CH_3C_6H C_2H_5OCHO CH_3COOCH_3 CH_3COOCH_2OH C_5H_6 $NH_2CH_2CH_2OH$ CH_2CCHC_4H $C_{10}H$ $C_{4}H_5CN$		CH ₃ OH: wood all extreme		
		MgCN		La	298 M st Updat	olecul ted: 2 Jar	es 1 2024	$\begin{array}{c} C_5O\\ HCCNCH^+\\ C_5H^+\\ c-C_5H\\ HC_4S\\ HMgCCCN\\ MgC_4H^+\\ H_2C_3H^+\\ HOCOOH\\ H_2C_3N\\ \end{array}$	$i-C_3H_2CN$ $C_2H_5OCH_3$ $1-C_5H_5CN$ $2-C_5H_5CN$ $n-CH_3CH_2CH_2O$ $i-CH_3CH_2CH_2O$ $i-C_4H_8$ $1-C_5H_4CCH$ $2-C_5H_4CCH$	H H	13+ Atoms C ₆ H ₅ CN HC ₁₁ N c-C ₅ H ₄ CCH ₂ c-C ₆ H ₅ CCH 1-C ₁₀ H ₇ CN 2-C ₁₀ H ₇ CN	C ₉ H ₈ 2-C ₉ H ₇ CN C ₆₀ + C ₇₀		smell! For foods, included and aged

<u>Complex</u> <u>Organic</u> <u>Molecules</u>

- Contains at least 6 or more atoms
- Contains at least one carbon atom

Herbst & van Dishoeck 2009

CH₃OH: Methyl or wood alcohol, is extremely toxic!

CH₃CHO: Green apple smell! Found in fermented oods, including yogurt and aged wines

Big Questions in Astrochemistry: COMs as Prebiotic Precursors?

http://www.esa.int/spaceinimages/Images/2001/05/Astrobiology

Do organic molecules synthesized in space contribute to the chemical evolution needed for the *emergence of life on Earth*?

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

National Radio Astronomy Observatory

• Molecular Energy Levels consist of:

1) ELECTRONIC STATES

- electrons change levels
- energies in visible, UV

2) VIBRATIONAL STATES

- normal modes of nuclear motions
- occur in infrared region

3) ROTATIONAL STATES

- end-on-end motion of nuclei
- energies in microwave/millimeter-wave regions

• Molecular Energy Levels consist of:

1) ELECTRONIC STATES

- electrons change levels
- energies in visible, UV

2) VIBRATIONAL STATES

- normal modes of nuclear motions
- occur in infrared region

- end-on-end motion of nuclei

- energies in microwave/millimeter-wave regions

- Electronic states have vibrational/rotational structure
- Vibrational states have rotational structure

ELECTRONIC STATES

- Need energies ~ 0.5 1 eV to excite molecules (~ 5,000 10,000 K)
- Need a **UV/optical "pump"** to excite levels, provided by background star
- Molecular material in front of source cannot be dense (< 100 cm⁻²)
 - \Rightarrow used in Diffuse Clouds
- Diffuse clouds contain primarily diatomic species
 - \Rightarrow UV radiation photo-dissociates molecules readily
- Almost always 2-3 atom species
 - relatively simple spectra observed in ABSORPTION
- Also important in stellar photospheres of cool stars
 - molecules can survive radiation field

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

Credit: L. Ziurys

Figure 5. The 6630–7200 Å region of the JD 245 1221 optical spectrum of IRAS 08182–6000, showing the γ (1, 0), (2,1) and (0, 0) bands of TiO and some of the atomic emission lines recorded in Table 4.

Figure 4. The spectrum of IRAS 08182-6000 (JD 2449426) compared with those of HD 96746, G2Iab (above) and HD 145544, G2Ib-II (below).

Credit: L. Ziurys

CN

&

CH

4500

VIBRATIONAL STATES

• For a simple two-atom molecule, think back to your 'simple harmonic oscillator' whose energy can be quantized

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

Molecular Energy Levels

VIBRATIONAL STATES

• For a simple two-atom molecule, think back to your 'simple harmonic oscillator' whose energy can be quantized

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

Molecular Energy Levels

r

VIBRATIONAL STATES

• The gap between higher excited states thus begins to narrow

Molecular Energy Levels

specac.com

VIBRATIONAL STATES

- For molecules with several atoms, the type of possible vibrations increases, and more fundamental bands observed!
- The total number of possible vibrations for a molecule is equal to 3N-6 where N is the # of atoms in the molecule
 - E.g., water, H_2O , has 3!

i) symmetric stretch, (ii) asymmetric stretch and (iii) bending modes.

specac.com

VIBRATIONAL STATES

- For molecules with several atoms, the type of possible vibrations increases, and more fundamental bands observed!
- The total number of possible vibrations for a molecule is equal to 3N-6 where N is the # of atoms in the molecule
 - E.g., water, H_2O , has 3!

i) symmetric stretch, (ii) asymmetric stretch and (iii) bending modes.

specac.com

VIBRATIONAL STATES

- Need **energies** ~ 200 2000 cm⁻¹ to excite molecules (300 3000 K)
- Need an IR "pump" to excite levels: background source
- Provided by **DUST from Circumstellar Envelopes**: strong IR emission background
- Young Protostar as background: IR source
- Density restrictions not as high as in optical region
- Used to study *chemical composition* of *circumstellar shells* close to stellar photosphere
- Molecules in denser material near cloud cores
- Spectra primarily observed in absorption, except H₂
- Useful for symmetric molecules
 - HCCH, H_3^+ , CCC, H_2CCH_2

Credit: L. Ziurys

IR Spectra of Star-Forming Core

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu specac.com

VIBRATIONAL STATES

JWST

JWST **IR Spectra of Star-Forming Core VIBRATIONAL STATES** 10⁻³ H₂O stretch CO H₂O bend + NHA CO. Silicates com + NH3•H2(Flux density (Jy) 10⁻⁴ CH3OH **Overlapping modes** NIR38 (A, ≈ 60 mag) ····· Continuum fit CHA J110621 (A, ≈ 95 mag), ×7 10⁻⁵ -····· Continuum fit 10^{-6} 9 10 12 13 8 11 14 5 NIRSpec FS (NIRCam WFSS) and MIRI LRS spectra of NIR38 and J110621. Wavelength (µm) Credit: Nature Astronomy (2023). DOI: 10.1038/s41550-022-01875-w

ROTATIONAL STATES

- Submillimeter and millimeter observations!
- Interstellar Molecular Gas is primarily COLD (T ~ 10 -100 K)
- Rotational Levels predominantly populated
 - \Rightarrow two-body **collisions** with H₂
- No background source needed
- Spontaneous Decay results in narrow emission lines
- Rotational Spectrum is "Fingerprint" Pattern
- Unique to a Given Chemical Compound!
- Allows for unambiguous identification
- Rotational Transition Frequencies
 - \Rightarrow quantized and proportional to

moments of inertia

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

Credit: L. Ziurys

ROTATIONAL STATES

- Interstellar Molecular Gas is primarily COLD (T ~ 10 -100 K)
- Rotational Levels predominantly populated
 - \Rightarrow two-body **collisions** with H₂
- No background source needed
- Spontaneous Decay results in narrow emission lines
- Rotational Spectrum is "Fingerprint" Pattern
- Unique to a Given Chemical Compound!
- Allows for *unambiguous* identification
- Rotational Transition Frequencies
 - ⇒ quantized and proportional to moments of inertia

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

Credit: L. Ziurys

Larmor's formula for a time-varying dipole can be applied to estimate the average power radiated by a rotating polar molecule. The **electric dipole moment** \vec{p} of any charge distribution $\rho(\vec{x})$ is defined as the integral :

$$\vec{p} \equiv \int x \vec{\rho}(v) \, dv, \qquad (7.120)$$

Over the volume v containing the charges. The average charge distribution in the case of two point charges +q and -q with separation r_e ,

$$|p| = qr_{\rm e}. \tag{7.120}$$

A **polar molecule** with a nonzero electric dipole moment will have a **rotation frequency** based on the quantization of angular momentum,

$$L = n\hbar. \tag{7.100}$$

Larmor's formula for a time-varying dipole can be applied to estimate the average power radiated by a rotating polar molecule. The **electric dipole moment** \vec{p} of any charge distribution $\rho(\vec{x})$ is defined as the integral :

$$\vec{p} \equiv \int x \vec{\rho}(v) \, dv, \qquad (7.120)$$

Over the volume v containing the charges. The average charge distribution in the case of two point charges +q and -q with separation r_e ,

$$|p| = qr_{\rm e}. \tag{7.120}$$

A **polar molecule** with a nonzero electric dipole moment will have a **rotation frequency** based on the quantization of angular momentum,

$$L = n\hbar$$
. (7.100)
RULE: *L* is an integer multiple of \hbar . This applies to the angular momentum of a rotating molecule

For a diatomic molecule with two atoms of masses m_A and m_B and whose centers are separated by equilibrium distance r_e

 $r_{\rm e} = r_{\rm A} + r_{\rm B}$ and $r_{\rm A} m_{\rm A} = r_{\rm B} m_{\rm B}$. (7.101)

In this case, we define the angular momentum in terms of the moment of inertia, I, and angular frequency, ω ,

$$L = I\omega, \qquad (7.102)$$

The moment of inertia is dependent on the **reduced mass** and the equilibrium distance squared so that,

* Or more typically the symbol ' μ ' is used \rightarrow

$$L = m r_{\rm e}^2 \omega, \qquad (7.104)$$

is used \rightarrow $m \equiv \left(\frac{m_{\rm A}m_{\rm B}}{m_{\rm A}+m_{\rm B}}\right)$

The rotational kinetic energy associated with the angular momentum is,

$$E_{\rm rot} = \frac{I\omega^2}{2} = \frac{L^2}{2I}.$$
 (7.106)

Which of course also becomes quantized!

$$E_{\rm rot} = \left(\frac{\hbar^2}{2I}\right) J (J+1), \qquad J = 0, 1, 2, \dots$$
(7.107)

This quantization of rotational energy implies that changes in rotational energy are quantized, and the states permitted are restricted by quantum-mechanical **selection rules**, which in this simple case is,

 $\Delta J = \pm 1. \tag{7.108}$

The frequency of the photon can be written,

$$\nu = \frac{\Delta E_{\text{rot}}}{h} = \frac{\hbar J}{2\pi I}, \qquad J = 1, 2, ..., \qquad (7.109)$$
$$\nu = \frac{hJ}{4\pi^2 m r_e^2}, \qquad J = 1, 2, ... \qquad (7.110)$$

* Important caveat! Most molecules are not simple diatomic...

Easier to define Rotational Constants,

e.g.,

otational Constants	Type of Rotor	Example Molecules
$I_A = 0; I_B = I_C$	Linear Rotor	CO, OCS, N ₂ O
$I_A < I_B = I_C$	Prolate symmetric top	CH ₃ CN
$I_A = I_B < I_C$	Oblate symmetric top	BF3, H3 ⁺ , CH ₃ ⁺ , NH ₃
$I_A = I_B = I_C$	Spherical top	CH ₄ , SF ₆
$I_A < I_B < I_C$	Asymmetric top	H ₂ O, CD ₂ H ⁺ , CH ₃ OH, CH ₃ OCH ₃ , HCOOCH ₃

Scibelli Thesis

* Important caveat! Most molecules are not simple diatomic...

Easier to define Rotational Constants,

e.g.,

Rotational Constants	Type of Rotor	Example Molecules
$I_A = 0; I_B = I_C$	Linear Rotor	CO, OCS, N ₂ O
$I_A < I_B = I_C$	Prolate symmetric top	CH ₃ CN
$I_A = I_B < I_C$	Oblate symmetric top	BF3, H3 ⁺ , CH ₃ ⁺ , NH ₃
$I_A = I_B = I_C$	Spherical top	CH ₄ , SF ₆
$I_A < I_B < I_C$	Asymmetric top	H ₂ O, CD ₂ H ⁺ , CH ₃ OH, CH ₃ OCH ₃ , HCOOCH ₃

Scibelli Thesis

'Ray's parameter is a measure of asymmetry where $\kappa = -1$ and $\kappa = +1$ are the prolate and oblate symmetric tops, respectively:

$$\kappa = \frac{(B - A + (B - C))}{(A - C)},$$

And, depending on the asymmetric projection of the molecule, another variable, *K*, is introduced that denotes the projection of *J* along either the a- or c-axis

'Ray's parameter is a measure of asymmetry where $\kappa = -1$ and $\kappa =$ +1 are the prolate and oblate symmetric tops, respectively:

$$\kappa = \frac{(B - A + (B - C))}{(A - C)},$$

And, depending on the asymmetric projection of the molecule, another variable, *K*, is introduced that denotes the projection of *J* along either the aor c-axis

Selection rules for a-type transitions: $\Delta J = 0, \pm 1, \Delta K_a = 0, \pm 2, \dots \Delta K_c = \pm 1, \pm 3, \dots$ Selection rules for b-type transitions: $\Delta J = 0, \pm 1, \Delta K_a = \pm 1, \pm 3, \dots \Delta K_c = \pm 1, \pm 3, \dots$ Selection rules for c-type transitions: $\Delta J = 0, \pm 1, \Delta K_a = \pm 1, \pm 3, \dots \Delta K_c = 0, \pm 2, \dots$

Main takeaway:

This is why you'll see molecular transitions written out with different notations! ... It gets complicated!

o-NH₃ (3,3) (23.870 GHz) \rightarrow CH₃OH 1_{0,1} - 0_{0,0} A (48.37GHz) CH₃CHO 5_{0,5} - 4_{0,4} A (95.963 GHz)

Main takeaway:

This is why you'll see molecular transitions written out with different notations! ... It gets complicated!

o-NH₃ (3,3) (23.870 GHz) CH₃OH 1_{0,1} - 0_{0,0} A (48.37GHz) CH₃CHO 5_{0,5} - 4_{0,4} A (95.963 GHz) \rightarrow

ASTR 5340 - Introduction to Radio Astronomy Contact: sscibell@nrao.edu

Energy

The **heavier a molecule/ more complex**, the more likely it is to be first detected at longer wavelengths.

The **heavier a molecule/ more complex**, the more likely it is to be first detected at longer wavelengths.

The **heavier a molecule/more complex**, the more likely it is to be first detected in a **dark cloud** or carbon star.

NRAO Observatory

Line Radiative Transfer (ERA 7.3, 7.4, +7.7)

So, how do we know what molecules to look for, and in what ISM conditions? And how do we extract useful parameters out for our science? ...

